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Abstract
The EM Algorithm has opened previously intractable problems in important

application areas to maximum likelihood estimation. But the actual functioning of
this estimation technique is difficult to master. We attempt here another intuitive
introduction to estimating parameters by iterative Expectation, and Maximization.
Estimation of Gaussian Mixture Models from the EM Algorithm is used to clarify
the construction of so-called complete data formulations that are used in EM. The
GMM re-estimation formulae are derived in detail using only basic multivariable
calculus with Lagrange Multipliers, which we hope makes the method more widely
accessible to students, scientists, and engineers.

EM and applications.
Maximum Likelihood Estimation (MLE) by the Expectation Maximization (EM) Algo-
rithm has significantly broadened the applicability of MLE. EM based algorithms allow
estimation of mixtures of random variables from the Exponential Family and are practical
for large models. Successful approaches to many problems have Used EM, e.g.:

• Estimation with Missing or censored data

• Economic time series models

• Decoding the Human Genome

• Molecular Spectrometry

• Analysis of censored data, particularly in medical fields where patients are lost to
follow-up

• Speech recognition

• Language translation

• Speaker recognition
∗This note is offered under Public Domain License, as is. The authors assume no responsibility whatso-

ever for its use by other parties, and make no guarantees and no warrantees, express or implied, about its
quality, reliability, fitness for any purpose, or any other characteristic. Any corrections or improvements
readers may develop will be welcomed by the corresponding author at vmstanford@DelReyAnalytics.com.
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Gaussian mixture models
A Gaussian mixture model assumes the overall population is composed of several subpop-
ulations, each of which is Gaussian distributed. Each of the subpopulations is specified by
the parameters of a Gaussian component (µ, σ, α) where µ is the mean, σ is the standard
deviation, and α is the mixture weight. In Gaussian Mixture distributions, each compo-
nent µ is the mean, and each component σ is its standard deviation. The mixture weight
α is the probability mass of each component of the mixture distribution. To assemble
the mixture model, compute the sum of the weighted component distributions. To ensure
that the resulting sum is in fact a probability distribution, the constraints αj > 0 and∑
αj = 1 need to be enforced, since the area under the curve defined by the mixture

model is necessarily equal to
∑
αj .

In order to obtain the formula for a Gaussian mixture density, let A = {j = 1...C|αj}
be the set of all mixture weights, M = {j = 1...C|µj} be the set of all the means, and
Σ = {j = 1...C|σj} be the set of all standard deviations of the component distributions.
Then the mixture is given by:

p (x|A,M,Σ) =

C∑
j=1

αj · p (x|µj , σj)

where p (x|µj , σj) = 1
σj
√

2π
e
− 1

2

(
x−µj
σj

)2

. An example mixture is shown in figure 1.
In order to attempt a ML estimate of the parameters of the mixture we construct its

log-likelihood function. Recall that in general, a likelihood function gives the likelihood of
a set of parameter values given a set of observations. In this case, the mixture model will
estimate the likelihood that the observed data was generated by component distributions
with the specified parameters. Less formally, the Gaussian mixture model tells you how
likely it is that you are correct about what components are generating the observed
distribution of the data. We can now give the symbolic statement of the model:

l (A,M,Σ|X) =

N∏
i=1

 C∑
j=1

αj · p (x|µj , σj)


log (l (A,M,Σ|X)) = log

 N∏
i=1

C∑
j=1

αj · p (x|µj , σj)


L (A,M,Σ|X) =

N∑
i=1

log

 C∑
j=1

αj · p (x|µj , σj)


We quickly see that L is not easily maximized because the logarithm of the sum does

not have partial derivatives with closed form solutions for the mixture parameters we
need to estimate. So we will not be able to solve a set of the usual least squares Normal
Equations to estimate the parameters. So what to do? We can use Newton’s method based
on second derivatives, but this may not be numerically tractable for mixtures of practical
interest. So we will have to consider the implications of a complete data formulation of
the EM Algorithm in order to arrive at an iterative solution. But what is the complete
data?
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Figure 1: Gaussian Mixture Model components and sum. Circles represent the
sample histogram, and the dotted lines represent the Gaussian components contributing
to the mixture shown as a darker solid line. Estimating the parameters of the individual
components of the mixture is our goal.

Karl Pearson in 1894: On the Dissection of Asymmetrical Frequency-
Curves
An early Gaussian mixture fitting algorithm was given by Karl Pearson in 1894 to fit
a two-component Gaussian mixture to data [9]. Pearson was asked by a biologist: Do
the data on Breadth-to-Forehead ratio of Naples Crabs justify the assertion that two
species were being caught? He used the method of moments to set up a ninth-order
polynomial whose solutions included the parameters of a univariate Gaussian mixture
with two components. Remarkably, he was able to solve for the parameters. He used
the first five moments to solve the polynomial and the sixth moment to chose among the
various solutions of the ninth-order polynomial. In the late Nineteenth Century what we
call the Normal or Gaussian Distribution was known simply as the “Law of Errors” because
it appeared so often in scientific measurements of continuous variables like: length, weight,
times of astronomical events, and quantities of chemical compounds. The expression of
a frequency distribution as the sum of Gaussian distributions was a radical departure at
the time.
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Pearson solved the following system of six equations to find estimates of the two-
component Gaussian Mixture Model, but it was by no means a routine exercise to do so.
Equations like these are found using the moment generating function

(
MX(t) = E

[
etX
])

of the Normal Distribution. Since this is a linear operator, the hypothesized mixture
distribution can be decomposed into the weighted MGF’s of the component mixture
distributions.

z1 + z2 = 1

γ1z1 + γ2z2 = 0

γ2
1z1

(
1 + u2

1

)
+ γ2

2z2

(
1 + u2

2

)
= µ2

γ3
1z1

(
1 + 3u2

1

)
+ γ3

2z2

(
1 + 3u2

2

)
= µ3

γ4
1z1

(
1 + 6u2

1 + 3u4
1

)
+ γ4

2z2

(
1 + 6u2

2 + 3u4
2

)
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γ5
1z1

(
1 + 10u2

1 + 15u4
1

)
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2z2
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2

)
= µ5
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Figure 2: Pearson’s Fig. I. Do the data on breadth of Forehead of Naples Crabs
justify the assertion that two species were being caught? Pearson formulated a 9th degree
polynomial in the mixture sample moments and solved it by hand to obtain estimates of
the mixture components shown. This remained the high water mark in mixture estimation
for decades, until the advent of digital computers allowed new classes of algorithms,
including the EM Algorithm, to be developed.
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The method of moments was extended somewhat recently by Kalai, Moitra, and
Valient[1] to the case of two component Gaussian mixtures in n-dimensions. This was
developed for image processing to avoid the high computational loads of the relatively
slow converging EM Algorithm. However, the method of moments does not generalize to
larger mixture models, and is fraught with numerical difficulties. In contrast, the EM al-
gorithm has allowed numerically stable computations enabling very large mixture models
in high dimensions to be estimated. Mixtures are used for:

• Classification: Are there multiple species here?

• Clustering: Do these things fall into natural groups?

• Estimation with missing data: Big data is never perfectly complete; so what do we
do about that?

• Density estimation: What is a good approximation to the Bayesian classifier?

What the EM Algorithm does
The EM algorithm is used to transform an explicit but intractable problem to a series of
tractable subproblems which can be solved as follows:

• Construct a simplified problem involving unknown (or hidden) variables, which if
known would allow solution of the explicit problem.

• Initialize the parameters of the explicit problem in some way (e.g. by approximating
a uniform prior probability distribution).

• Find the expectation of the hidden variables, given the current estimate of the
parameters of the explicit problem and the sample data.

• Use the expected values of the hidden variables to find an improved estimate of the
explicit problem parameters.

• Cycle steps 2, 3, and 4 until the algorithm arrives at a fixed point.

This process is illustrated in figure 4. Todd K. Moon’s review paper 1996 IEEE Sig-
nal Processing Magazine The Expectation-Maximization Algorithm contains an excellent
account [8]. It is important to understand that this “algorithm” does not fully specify
any particular estimation procedure and so may more appropriately be viewed as a de-
sign technique for an algorithm. Moreover, it does not inform the algorithm designer
about what hidden variables she should imagine to allow a tractable maximum likelihood
solution.
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Figure 3: The EM algorithm. After initialization, the E-Step and the M-step are al-
ternated until the parameter estimate has converged by some criterion. Examples include
a very small increase in the likelihood of the data given the model parameters, or very
small changes in the estimate of the model parameters.

EM Algorithm Theorems
Leonard Baum and his colleagues presented EM in a fairly general form in the late 1960’s
[5, 4, 3]. But it remained for Dempster, Laird, and Rubin [2] to develop the applicability
of this algorithm beyond the Hidden Markov Model of Baum et al.
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At a very high level Baum offered the following theorem. let:

P (λ) =

∫
X

p(x, λ)dµ(x) (1)

and let the auxiliary function Q be defined as:

Q(λ, λ′) =

∫
X

p(x, λ)log p(x, λ′)dµ(x) (2)

then Q(λ, λ′) > Q(λ, λ) =⇒ P (λ′) > P (λ).

where λ is the set of parameters of the mixture. Thus we can substitute the maximiza-
tion of Q(λ, λ′) with respect to λ′ as a proxy for P (λ′), which we will see is advantageous
for important problems. In much of the literature on the EM Algorithm, the so-called
Q-function is used to designate the auxiliary function for the specific likelihood to be
maximized. Gaussian Mixture Models are key to many modern pattern recognition ap-
plications and are used below to sharpen the abstract theorem statement by Baum given
above.

Redner and Walker studied this in detail in their widely sited paper Mixture Densities,
Maximum Likelihood and the EM Algorithm which offers the first general proofs on esti-
mating mixtures of exponential family distributions using EM [10] and which summarizes
the the EM algorithm as follows:

“Suppose that one has a measure space Y of "complete data" and a mea-
surable map y → x(y) of Y to a measure space X of “incomplete data." Let
f(y|Φ) be a member of a parametric family of probability density functions
defined on Y for Φ ∈ Φ, and suppose that g(x|Φ) is a probability density
function on X induced by f(y|Φ). For a given x ∈X , the purpose of the EM
algorithm is to maximize the incomplete data log-likelihood L(Φ) = log g(x|Φ)
over Φ ∈ Ω by exploiting the relationship between f(y|Φ) and g(x|Φ). It is
intended especially for applications in which the maximization of the complete
data log-likelihood log f(y|Φ) over Φ ∈ Φ is particularly easy.

For x ∈X , set Y (x) = {y : x(y) = x}. The conditional density k(y|x,Φ)
on Y (x) is given by f(y|Φ) = k(y|x,Φ)g(x|Φ). For Φ

′
in Ω, one then

L(Φ) = Q(Φ|Φ
′
)−H(Φ|Φ

′
) (3)

WhereQ(Φ|Φ′) = E(log f(y|Φ)|x,Φ′) andH(Φ|Φ′) = E(log k(y|x,Φ)|x,Φ′).
The general EM algorithm of Dempster, Laird, and Rubin [DempsterLairdRu-
bin1977] is the following: Given a current approximation Φc of a maximizer
of L(Φ), obtain a next approximation Φ+ as follows:

E-Step. Determine Q(Φ|Φc).
M-Step. Chose Φ+ ∈ argmaxΦ∈ΩQ(Φ|Φc).
...
From this general description, it is not clear that the EM algorithm even

deserves to be called an algorithm. However, as we indicated above, the EM

8



algorithm is used most often in applications which permit the easy maximiza-
tion of log f(y) over Φ ∈ Ω. In such applications, the M-step maximization of
Q(Φ|Φc) over Φ ∈ Ω is usually carried out with corresponding ease. In fact,
as one sees in the sequel, the E-step and the M-step are usually combined
into one very easily implemented step in most applications involving mixture
density estimation problems.”

It is certainly not clear how to proceed from this high level statement of the EM Algo-
rithm, and additional insights will be needed. Another approachable treatment of the EM
Algorithm is found in Jeff Bilmes’ widely cited A Gentle Tutorial of the EM Algorithm
and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov
Models [6]. Zoubin Ghahramani and Michael Jordan also give an approachable treatment
to using EM to estimate GMM’s when there is missing data: Learning from incomplete
data [7]. Beyond these excellent resources, it seems that some additional simplification
and clarification of the EM Algorithm for GMM’s would be helpful to many readers who
want to understand and apply the method. We address this below.

Complete data formulation of the GMM
In complete data problem formulations, we are given a set of observations and its distri-
bution, here the GMM defined by equations (3), and (4) so

g(x,Φ) ∼
C∑
j=1

αj

σj
√

2π
e
− 1

2

(
x−µj
σj

)2

(4)

where Φ is the parameter set {A,M,Σ} of the mixture density. X (our observed sample
of data points) is called the incomplete data, here the data x = {xi}Ni=1 together with
the parameters Φ. This is intractable for most mixture problems using basic maximum
likelihood estimation. To complete the data we imagine that there are a set of hidden
parameters Y, which, if we knew their values, would make the maximum likelihood esti-
mation problem tractable. Z = (X,Y ) then is the complete data. Further we posit that
there is a joint probability density of the complete data as Redner and Walker did above:

f(y|Φ) = k(y|x,Φ)g(x|Φ) (5)

How does this operate in a GMM? For the Gaussian mixture estimation we suppose that
that hidden variables are Y = {yi}Ni=1 where

yij =

{
1 if xi ∼ p(x|αj , µj , σj)
0 otherwise

(6)

In the literature, typically, the complete data emerge dei ex machina, which recalls Redner
and Walker’s statement that: “From this general description, it is not clear that the EM
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algorithm even deserves to be called an algorithm. However, as we indicated above, the
EM algorithm is used most often in applications which permit the easy maximization
of log f(y|Φ) over Φ ∈ Ω.” Thus mathematical intuition is the key for designing hidden
variables for the complete data representation of the problem. So the key intuitions that
makes the complete data actually work is extrinsic to the EM Algorithm itself.

Most authors on GMM’s simply assert that: if we had a matrix of binary variables
that specified the Gaussian component whence each point came, then we could cleanly
decompose the problem into a tractable complete likelihood function as follows:

lc(Φ, X, Y ) =

N∑
i=1

C∑
j=1

zij log [p(xi|yij ,Φ)] p(yij |Φ) (7)

If we were given a set of binary dummy variables

zij =

{
1 if point i was generated by component j

0 otherwise

We can use the fact that zero exponents are always 1 for for non-zero bases we write the
joint density as:

p(xi|A,M,Σ, Y ) =

C∏
j=1

(
αj

σj
√

2π
e
− 1

2

(
xi−µj
σj

)2
)yij

The likelihood function then becomes

Lc (A,M,Σ|X,Y ) =

N∏
i=1

p(xi|A,M,Σ, Y )

Lc (A,M,Σ|X,Y ) =

N∏
i=1

C∏
j=1

(
αj

σj
√

2π
e
− 1

2

(
xi−µj
σj

)2
)yij

log (Lc (A,M,Σ|X,Y )) = log

 N∏
i=1

C∏
j=1

(
αj

σj
√

2π
e
− 1

2

(
xi−µj
σj

)2
)yij

lc (A,M,Σ|X,Y ) =

N∑
i=1

C∑
j=1

yij log

(
αj

σj
√

2π
e
− 1

2

(
xi−µj
σj

)2
)

=

N∑
i=1

C∑
j=1

yij log

(
αj

σj
√

2π
e
− 1

2

(
xi−µj
σj

)2
)

=

N∑
i=1

C∑
j=1

yij

(
log (αj)− log (σj)−

1

2
log (2π)− 1

2

(
xi − µj
σj

)2
)

Since y is unknown we can proceed by using its expectation:

Q(Φ|Φk) = E[lc(Φ, X, Y )|X,Φk)] (8)

10



and
Φk+1 = argmaxΦ [Q(Φ|Φk)] (9)

For the GMM this becomes:

ykij = E(yij |x,Φk) =
α

(k−1)
j p

(
xi|µk−1

j , σk−1
j

)∑C
l=1 α

k−1
l p

(
xi|µk−1

l , σk−1
l

) (10)

and this is clearly the probability that component j generated point i by an elementary
application of Bayes’ Theorem. With these expected values in hand we can proceed to
finding the estimates of the mixture parameters. In order to solve for the mixture weights
αj we must use a Lagrange multiplier to constrain their sum to unity. So we must optimize

N∑
i=1

C∑
j=1

yij

(
log (αj)− log (σj)−

1

2
log (2π)− 1

2

(
xi − µj
σj

)2
)

+ λ

(
1−

C∑
k=1

αk

)

With this we can proceed by the usual partial derivatives to provide a system of
equations to solve. It happens that these work out well and can lead us in easy stages to
closed form solutions for the parameters of the mixture as follows:

∂lc
∂αj

=
1

αj

N∑
i=1

yij − λ = 0

N∑
i=1

yij = αjλ

Now, summing both sides over the number of Gaussian components will yield a pleasing
simplification owing to the stochastic constraints on the yij ′s and αj ′s as follows:

C∑
j=1

N∑
i=1

yij = λ

C∑
j=1

αj

which becomes:

N = λ · 1

whence by substitution we obtain:

N∑
i=1

yij = αjN

and

αj =
1

N

N∑
i=1

yij

These being the row sums of the conditional class membership matrix given by the
Yij
′s which is just the probability of the observed data points xi being generated by the
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jth mixture component. So these are the estimates of the mixture weights αj that we
wanted.

Next we seek to find the component means and variances. The choice here of the
Gaussian Mixture Model will lead us to closed form solutions for these quantities. As we
have noted, some other important exponential family distributions can be solved in an
analogous way so this argument extends beyond GMM’s. Returning to lc (A,M,Σ|X,Y )
now having solved A = {αj} above we have

lc (M,Σ|A,X, Y ) =

N∑
i=1

C∑
j=1

yij

(
log (αj)− log (σj)−

1

2
log (2π)− 1

2

(
xi − µj
σj

)2
)

∂lc
∂µj

=

N∑
i=1

yij

(
−1

2

∂

∂µj

(
xi − µj
σj

)2
)

= 0

0 =

N∑
i=1

yij

(
xi − µj
σj

)

0 =

N∑
i=1

(
1

σj
yijxi −

1

σj
yijµj

)

0 =

N∑
i=1

yijxi −
N∑
i=1

yijµj

µj

N∑
i=1

yij =

N∑
i=1

yijxi

µjNαj =

N∑
i=1

yijxi

µj =

∑N
i=1 yijxi
Nαj

Finally we seek the standard deviations σj .

lc (Σ|M,A,X, Y ) =

N∑
i=1

C∑
j=1

yij

(
log (αj)− log (σj)−

1

2
log (2π)− 1

2

(
xi − µj
σj

)2
)

∂lc
∂σj

=

N∑
i=1

yij

(
− 1

σj
+

(
(xi − µj)2

σ3
j

))
= 0

N∑
i=1

yij

(
−1 +

(
(xi − µj)2

σ2
j

))
= 0

N∑
i=1

yij

(
−σ2

j + (xi − µj)2
)

= 0
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σ2
j

N∑
i=1

yij =

N∑
i=1

yij (xi − µj)2

σ2
j =

∑N
i=1 yij (xi − µj)2∑N

i=1 yij

=

∑N
i=1 yij (xi − µj)2

Nαj

Of course, the initial α(0)
j , µ(0)

j ,and σ(0)
j , must be supplied below to seed the iteration,

perhaps by choosing an approximately uniform prior across the range of the data sample x,
or some other approximate method, to initialize the EM iteration embodied in equations
11 through 15. This done, we can compute the first iteration of y(1)

ij . Then having the first
estimate of the complete parameters Y , the mixture weights αj the component means
µj and the standard deviations σj , in closed form we can write the GMM re-estimation
equations as:

y
(k)
ij =

α
(k−1)
j p

(
xi|µ(k−1)

j , σ
(k−1)
j

)
∑C
l=1 α

(k−1)
l p

(
xi|µ(k−1)

l , σ
(k−1)
l

) (11)

For the specific case of the Gaussian Mixture Model being developed here, this is:

y
(k)
ij =

α
(k)
j

σ
(k)
j

√
2π
e
− 1

2

(
xi−µ

(k)
i

σ
(k)
i

)2

∑C
l=1

α
(k)
l

σ
(k)
l

√
2π
e
− 1

2

(
xi−µ

(k)
l

σ
(k)
l

)2 (12)

Then the mixture parameters are re-estimated as follows:

α
(k)
j =

1

N

N∑
i=1

y
(k)
ij (13)

µ
(k)
j =

∑N
i=1 y

(k)
ij xi

Nα
(k)
j

(14)

σ
(k)
j =

√√√√∑N
i=1 y

(k)
ij (xi − µ(k)

j )2

Nα
(k)
j

(15)

So what’s going on here? It can be seen that we have constructed an iterative map
of the parameter space onto itself, which Redner and Walker showed to be a contractive
mapping, which guarantees convergence to a fixed point under appropriate hypothesis. A
streamlined statement of this theorem is as follows.

Theorem: If the Fisher information matrix I(Φ) is positive definite at
Φ∗ = (α∗1, . . . , α

∗
m, φ

∗
1, . . . , φ

∗
m) is such that α∗i > 0 for 1 ≤ i ≤ m. For all Φ(0) in

Ω, denote by {Φ(j)}j=0,1,2,..., the sequence Ω by EM iteration. Then there is a constant
0 ≤ λ < 1 for which ∣∣∣Φ(j+1) − ΦN

∣∣∣ ≤ λ ∣∣∣Φ(j) − ΦN
∣∣∣

13



whenever Φ(0) is sufficiently near ΦN . The theorems of Baum et al. showed that this
fixed point is a local maximizer of the likelihood function of the explicit distribution.
The interested reader is referred to the bibliography which contains excellent, though
sometimes somewhat opaque treatments of the topics presented here.

Generalization to multivariate GMM
Other mixture distributions in the Exponential Family may be estimated with structurally
similar formulae, as is discussed in Redner and Walker. Of course this generalizes readily
to the multivariate case as:

y
(k)
ij = E(yij |x,Φ(k)) =

α
(k−1)
j

∣∣∣Σ(k−1)
j

∣∣∣− 1
2

e
− 1

2

(
xi−m(k−1)

j

)T(
xi−m(k−1)

j

)
∑C
l=1 α

(k−1)
l

∣∣∣Σ(k−1)
l

∣∣∣− 1
2

e
− 1

2

(
xi−m(k−1)

l

)T(
xi−m(k−1)

l

) (16)

α
(k)
j =

1

N

N∑
i=1

y
(k−1)
ij (17)

m
(k)
j =

∑N
i=1 y

(k)
ij xi

Nαkj
(18)

Σ
(k)
j =

∑N
i=1 y

(k)
ij

(
xi −m

(k−1)
j

)(
xi −m

(k−1)
j

)T
Nα

(k)
j

(19)

With this comes certain numerical issues to manage, as sometimes particular covariance
matrices tend towards singularity. This must be detected and dealt with in the computer
codes that execute the estimation process.

Summary of GMM Complete Data Concepts
As we have mentioned before, Gaussian Mixture Models are an example of an EM al-
gorithm, and the EM algorithm is a design pattern specifying how to construct a more
detailed algorithm to solve a complete data problem. The way in which GMMs satisfy
the conditions of a complete data problem is illustrated in the table of correspondences
below:
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Gaussian Mixture Data instantiates Complete Data Problem
parameter set Φ = {A,M,Σ} −→ incomplete, or explicit parameters

hidden parameters Y = {yij} −→ hidden parameters that
make the MLE tractable

prior parameter set {A0,M0,Σ0}
that comes from extrinsic sources −→ initial “guess” or initial priors

x = {xi}Ni=1 −→ observed data set
X = {x,Φ} −→ incomplete data
{X,Y } −→ complete data

Note that the only difference between the “complete data” and the “incomplete data”
comes from the choice of parameters, not X, even though X is what we would conven-
tionally think of as being “data”. This is due to weakness in the underlying terminology,
which does not lend itself to naturally conveying what the actual distinction between the
terms is. That said, we can show how the parts of the GMM estimation procedure match
up with the conceptual components of the EM algorithm as given in Todd Moon’s 1996
paper:

Gaussian Mixture Model instantiates EM Algorithm
parameter set Y={A2,M2,Σ2}

that comes from a guess −→ Choosing an initial parameter θ[0]

Q (Φ|Φ′) = E (log f (Y |Φ) |x,Φ′) −→ Estimate unobserved data using θ[k]

Φk+1 = argmaxΦ [Q (Φ|Φk)] −→
Compute maximum likelihood
estimate of parameter θ[k+1]

using estimated data
Is Φk+1 = Φk? −→ Check for parameter fixed point
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GMM Example Program in Matlab/Octave

#!/opt / l o c a l / b i n / oc tave
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Name : gmm.m
% Language GNU Octave
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Purpose : e s t ima t e the pa ramete r s o f a Gaus s i an m ix tu r e model
% and p l o t the s t a g e s o f the p r o c e s s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Author : V ince S tan f o rd
% Date : J u l y 17 , 2013
% L i c e n s e : We o f f e r t h i s program under :
% C r e a t i v e Commons A t t r i b u t i o n 4 .0 I n t e r n a t i o n a l
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% This program i s not war ranted to be f i t f o r any
% p a r t i c u l a r purpose , nor to be f r e e from d e f e c t s
% i n d e s i g n or imp l ementa t i on . You a r e welcome to
% use i t , ex tend i t , o r modi fy i t as you p l e a s e .
% But you do t h i s a t your own r i s k .
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Note : Th i s program i s w r i t t e n f o r e x p o s i t i o n , and i s not
% p a r t i c u l a r l y pe r fo rmant . Fu r t h e r v e c t o r i z a t i o n
% cou ld y i e l d s u b s t a n t i a l l y enhanced pe r fo rmance .
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ITERATION_LIMIT=25
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% con s t r u c t random t e s t data
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−
groups=3
G=1: groups ;
sampCount (G)=1000
xCount=sum( sampCount )
T=1: xCount ;
x=randn ( xCount , 1 ) ;

t =1;
f o r g=1: g roups

f o r i =1: sampCount ( g )
x ( t++)=(x ( t )+2∗g )∗g ;

e nd f o r
end f o r

xBinCount=xCount /10
[ xCounts , xB ins ]= h i s t ( x , xBinCount ) ;
p l o t ( xBins , xCounts )

xMean=mean ( x )
xStd=s td ( x )
range=3∗xStd

mid=sum(G)/ groups
m=xMean+xStd ∗(G−mid )
s=xStd ^2./G
h=z e r o s ( xCount , g roups ) ;
p=ones ( groups , 1 ) / groups ;
d=z e r o s ( groups , 1 ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% compute the expec t ed v a l u e o f the
% h idden v a r i a b l e s h ( i , j ) , which
% r e p r e s e n t the p r o b a b i l i t y t ha t sample
% po i n t i b e l ong s to component j .
% ( t h i s shou l d be v e c t o r i z e d f o r speed
% but i s i n s t e a d w r i t t e n to maximize
% s t r u c t u r a l c l a r i t y v i s−a−v i s the
% pub l i s h e d computing fo rmu lae )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r i t e r a t i o n = 1 : ITERATION_LIMIT
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i t e r a t i o n
f o r l =1: g roups

h (T, l )=p ( l )∗ normpdf ( x (T) ,m( l ) , s q r t ( s ( l ) ) ) ;
e nd f o r
t o t a l L i k e l i h o o d=sum(h ’ ) ;
f o r t =1: xCount

norm=1/ t o t a l L i k e l i h o o d ( t ) ;
f o r l =1: g roups

h ( t , l )=norm∗h ( t , l ) ;
e nd f o r

end f o r
p=sum(h ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% maximize the i n comp l e t e v a r i a b l e s u s i n g
% the expec t ed v a l u e s o f the complete v a r i a b l e s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r j = 1 : g roups

sSum=0;
mSum=0;
f o r t = 1 : xCount

mSum+=h( t , j )∗ x ( t ) ;
sSum+=h( t , j )∗ ( ( x ( t )−m( j ) )^2 ) ;

e nd f o r
s ( j )=sSum/p ( j ) ;
m( j )=mSum/p ( j ) ;

e nd f o r
p=p/xCount
m
s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% setup and p l o t the t h e o r e t i c a l normal vs ob s e r v ed
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f i g u r e ( 1 ) ;
xProbs=xCounts /sum( xCounts ) ;
d e l t aZ=mean ( d i f f ( xB ins ) ) ;

pdfMixZProbs=z e r o s ( xBinCount , 1 ) ;

f o r i =1: xBinCount
f o r j =1: g roups

pdfMixZProbs ( i )=pdfMixZProbs ( i )+p ( j )∗ normpdf ( xB ins ( i ) ,m( j ) , s q r t ( s ( j ) ) ) ;
e nd f o r

end f o r
pdfMixZProbs=pdfMixZProbs∗ de l t aZ ;

% S i n g l e quote the f o l l o w i n g s t r i n g s to run i n Matlab .
p l o t ( xBins , xProbs ,"+" ," ma r k e r s i z e " ,4 , xBins , pdfMixZProbs , " l i n ew i d t h " , 5 ) ;
t i t l e (" Observed and Est imated Frequency D e n s i t i e s " ) ;
x l a b e l (" Standard De v i a t i o n s " ) ;
y l a b e l (" p ( x ( t ) ) " )

drawnow ( ) ;
i f ( i t e r a t i o n ==1)

i npu t (" p r e s s any key to i t e r a t e " ) ;
e n d i f

e nd f o r

i n pu t (" p r e s s any key to e x i t " ) ;

e x i t (0 )
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