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Abstract— We discuss selected emerging technologies in physiological signal processing, low-cost pervasive sensors, and diagnostic 
pattern recognition.  Serious practical issues remain for signal acquisition from active users in their own environments using current 
commodity sensors.  We describe robust processing algorithms needed for mobile ECG sensors (e.g. non-contact capacitive sensors with 
low signal-to-noise ratios) based on detection techniques purpose-designed to function effectively with data from mobile and exercising 
users.   
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I. INTRODUCTION  
Several sensor types have become almost universally available and affordable to consumers in recent years. Concomitant cost 

reductions of microcontrollers allow low cost pervasive signal acquisition in many situations, from homes, to workplaces, to 
clinical settings. There are numerous research efforts focused on finding medically relevant uses of signals from such pervasive 
sensors.  

We provide an extended analysis of practical issues with electrocardiogram (ECG) processing under adverse conditions with 
commodity sensors, e.g. a non-contact capacitive sensor operating through clothing.  We show that robust QRS-complex detection 
is prerequisite in the poor Signal-to-Noise Ratio (SNR) conditions typical of mobile and exercise applications.  We contrast 
performance of earlier clinical grade algorithms, e.g. Pan-Tomkins [1], in poor SNR with our robust detection algorithms.  This 
contrast could be illustrative of engineering developments needed to exploit commodity pervasive sensors in actual user 
environments. 

 

II. PRIMARY SENSORS 
The sensors discussed here are embodied in non-invasive, low-cost, widely available, hardware.  Yet they are opening up a 

wide range of physiological signal processing and diagnostic research and engineering opportunities. Moreover, the commodity 
cost levels open research and data collection to wider communities involved in developing medically relevant measurements.   

A. Electrocardiogram 
There are several types of cardiac sensors used to acquire signals, many claiming improved usability over the standard saline 

gel electrodes widely used in clinical settings, e.g.:  

Dry electrodes - These do not require saline gel and are used to capture ECG signals [2]. Generally, these are stiff, can induce 
skin irritation in some subjects, and become uncomfortable for the wearer [3]. To capture a usable signal, these sensors may require 
the user to remain still during signal acquisition [4].  

Capacitive non-contact electrodes – These sense signals across a gap between the sensors and the skin to capture signals with 
low SNR, depending on conditions [5]. These sensors can operate through hair, fabric, or the air, and may be placed on car seats, 
chairs, beds, etc. [6].  

Piezoelectric sensors - may be used to “sense the in-ear pulse waves (EPW) and convert it to an electric current” [7].  The pulse 
waves may be interpreted with an algorithm to obtain heart rate. However, the heart rate measurements are affected by motion 
artifacts, which cause errors in the analytics. There are other types of piezoelectric sensors being used for heart-based analytics as 
well, sometimes in stretchable fabrics [8]. 



Conductive cloth - May be used as flexible capacitive electrodes but some sensors require pressure to ensure good skin contact 
[9]. Graphene oxide sensors may also be embedded in fabric [10]. 

Saline gel electrodes – These are the clinical gold-standard but must be secured to the skin and must be used with wet 
conductive gel to obtain a good signal. These are the most commonly used sensors for clinical purposes [11].  They require the use 
of wet electrodes and may irritate the patient’s skin [12].  

Tattoos – These may be fabricated from very lightweight materials to measure ECGs, skin temperature, etc. and therefore offer 
greater comfort to the users [13]. 

Dry electrodes, capacitive devices such as conductive cloth, are much more comfortable for the patient/user because they do not 
require continuous contact enforced by a strap or adhesive [14]. This is particularly important for neonatal and burn patients who 
cannot tolerate the gel or pressure on the skin that saline gel electrodes require. Some vendors are using nanotechnology in fabrics 
[15] for continuous real time monitoring of cardiac signals.  It is possible to use smart textiles as electrodes for ECG measurement 
purposes [16]. The benefit of the textile-based sensors is that the user does not have to wear uncomfortable chest straps or 
expensive watches. The fabrics are close to the skin, giving a good basis for acquiring cleaner signals.  The fabric-based sensors do 
not need conductive gel, as traditional ECG sensors do.  

For the purposes of clinical monitoring, the ECG devices should be low-energy and cost-effective. They should also require 
little patient interaction, should produce clean signals for analysis so that the QRS waves may be accurately detected and localized. 
The algorithms used should also be computationally efficient, particularly for mobile users [17].  Most of these sensors are 
designed to capture a single lead ECG called “rhythm strips” suitable to monitoring, but which do not provide the rich diagnostic 
detail of a traditional 12-lead ECG [18]. 

B. Microphones 
  Commodity microphones have long been available, e.g. Thomas Edison’s 1887 patent application for the carbon button 

microphone [19], and Sessler and West’s Electroacoustic Transducer patent on the electret microphone [20]. Both of these 
technologies became dominant for a time and remain in use today. Since then, many designs have become ubiquitous, e.g.: carbon 
button, condenser, dynamic, piezoelectric crystal, Electret, and lately MEMS, microphones.  Applications include speech, heart 
sounds, auscultation of a variety of body sounds, and recently voice analysis for neurological and certain cardiac conditions. 

C. Accelerometers 
Accelerometers can provide relevant physiological measurements, with applications in medicine, rehabilitation, sports, and 

fitness.  Accelerometers commonly used in smartphones are MEMS designs with at least three axis measurements-based 
capacitive sensing, and often nine axis with accelerometer, gyroscope, and magnetometer axes. There are many applications, e.g. 
Ballistocardiogram, gait analysis, athletic energy expenditure, heart rate, sleep tracking, step counting, and even Systolic Time 
Intervals [21, 22, 23, 24, 25].  

D. Photoplethysmograph (PPG)  
Photoplethysmography  (PPG) optical sensors “measure blood perfusion through tissues by the emission of light rays” created 

by light-emitting diodes (LEDs).  They are commonly found on fitness devices (e.g. FitBit) and also on calibrated pulse oximetry 
devices (often used in a hospital to capture pulse and respiration rates via a clamped device on an index finger). These sensors are 
cheap and uncomplicated to build and do not require the use of gels or adhesives to capture the signals.  The PPG signals may be 
analyzed to reveal pulse rate variability (PRV), pulse transit time through the cardiovascular system (for analysis of sleep-related 
symptoms), pulse wave velocity (to measure elasticity of the blood vessels) and other respiratory and cardiac health indicators [26]. 

PPG sensors may produce erroneous readings due to “characteristics such as skin tone, thickness of the fat layer and rigidity of 
the radial artery [27]  If the PPG sensor is not tightly attached to the body (e.g., via a watch strap or finger clamp at appropriate 
pressures), the light diffuses and the data may be lost.  Movement, especially during exercise) may also cause artifacts in the data.  
The finger clamp may also introduce artifacts by putting pressure on the fingertip, thus altering the blood perfusion characteristics. 

Several types of PPG sensors are used to capture pulse rates and to measure pulse rate variability. They are also used to obtain 
continuous estimates of blood pressure [28].  

 

III. DIAGNOSTIC SIGNALS 
The primary sensors mentioned above capture raw time-series containing physiologically relevant signals, but detailed 

interpretations must be made in the context of the operation of the underlying generating systems.   

A. Electrocardiograms 
An ECG is a multichannel voltage time series of the electrical activity of the human heart. It is often recorded from electrodes 

adhered to the chest wall at prescribed positions using adhesive patches which hold saline gel for conductivity.  Machine learning 
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approaches, e.g. random forest classifiers, or Deep Neural Networks (DNNs), are often used with raw signals. But physiologically 
motivated feature extraction and interpretation requires detailed understanding of the anatomy and electrophysiology of the heart.  
For example: P-R interval and J-Wave offer little in the way of distinct frequency domain signatures, yet they are key diagnostics 
because of their critical time domain information on conductance and repolarization of the heart. 

Heart rate variability (HRV) is defined as “the change in time intervals between adjacent heartbeats” in the ECG. Pulse rate 
variability (PRV) is measured via PPG sensors and is usually closely correlated with HRV when the subject is at rest.  HRV is 
more clinically accurate than PRV in cases where the patient has frequent abnormal beats [29], such as premature ventricular 
contractions, ECG sensors should be used in those cases.  Alterations in HRV are early indicators of fetal distress. Low HRV is a 
strong independent variable to predict both morbidity and mortality [30].  HRV may also be used to study and manage various 
neuropsychiatric disorders such as bipolar disorder [31]. 

Blood pressure variability (BPV), measured continuously, may be used to predict imminent cardiac events and is an indicator 
that the subject may suffer from obstructive sleep apnea, a serious chronic disease [32]. 

The advent of smaller sensors that draw less power allows development of continuous biomedical signal monitoring for two 
primary purposes: fitness monitoring, and clinical monitoring. The fitness monitoring sensors are used to track athletic performance 
and conditions (e.g., heart rate, number of steps, etc.).  These types of monitors do not need FDA approval, so they can be 
introduced into the market quickly.  Clinical monitoring sensors are used to monitor patients for specific clinical purposes and do 
require FDA approval before being marketed.   

Early fitness sensors were very simple, often simply step counters based on threshold detectors applied to accelerometer time 
series. Then, companies such as FitBit began adding heart rate sensors to watches.  These sensors are usually light sensors (PPGs) 
worn on the wrist, a location susceptible to motion artifacts and with less than ideal blood profusion.   

Fitness sensors are sometimes used for clinical purposes as well.  For example, some athletes wear devices designed to capture 
signals during exercise that could warn of sudden cardiac death (SCD).  “Nearly 58% of SCDs reported between 1980 and 2006 
have been reported in basketball and football athletes” [33] – and these deaths typically occur during or immediately after exercise.  
Similarly, 92% of SCDs in the active duty military population occurred while running in organized physical training events. Thus, 
having a wearable fabric that can acquire the ECG and blood pressure of the athlete in real time and activate an alerting mechanism 
when anomalies are detected is highly desirable. The alerting functions could be provided via a linked smart phone for wide area 
distribution. 

Many disease states are difficult to diagnose and manage via periodic clinic visits alone. For example, hypertension is a disease 
afflicting approximately 30% of the American public  “The established office-based approach yields only 50% blood pressure 
control rates and low levels of patient engagement.” [34].  Other therapeutic engagement approaches are needed.  

With the availability of PPG and ECG sensors in watches, new screening capabilities are now available, e.g. Apple’s ECG 
sensor on its watch works with its PPG sensor to identify possible atrial fibrillation incidents. AliveCor has received FDA approval 
to use its ECG sensor to identify patients who have indicators of hyperkalemia [35], a very high potassium level that is found in 
patients with kidney disease.  

A number of useful metrics may be obtained by using different algorithms with signals from a single sensor. For example, a 
single-lead ECG sensor can be used to obtain measurements such as heart rate, heart rate variability, respiration rate, and indicators 
of atrial fibrillation.   A PPG sensor may be used to measure PRV in pediatric oncology patients in order to predict organ failure 
[36].  Because PPG sensors are typically cheaper and more widely available, they may be used by more patients than HRV 
monitoring with an ECG sensor. 

B. Speech 
Speech signals are produced and transmitted by humans on a species-wide scale. Voice signal analysis and feature extraction 

has yielded effective, and non-invasive, diagnostic tools for a variety of medical indications.  Selected examples of current research 
utilizing speech and voice based features includes: 

Voice spectral/cepstral features associated with Coronary Artery Disease (CAD).  Recently, Maor et al. at Mayo Clinic [37] 
developed a study of patients about to undergo coronary angiography to diagnose CAD (n=101). Recordings of each subject were 
made prospectively, and Mel Frequency Cepstral Coefficients (MFCC’s), spectra, and spectrogram features were computed.  They 
found five voice features associated with CAD, and elevated odds ratios, at statistically significant levels. 

PTSD detection. Marmar et al. [38] used the SRI pipeline to extract upwards of forty thousand speech features and used random 
forest algorithms to identify eighteen features associated with PTSD (n=129).  They achieved an Area Under the ROC Curve 
(AUROC) of 0.954, and a correct classification rate of 0.891, suggesting that PTSD can be identified from voice features.  This 
study was relatively balanced using ground truth assessments, so the correct classification rate is indicative of low false positive 
and low false negative rates simultaneously. 



Neurological disease detection.  There is a research community focused on diagnosis of Parkinson’s Disease, and Multiple 
Sclerosis, using  voice-based features, e.g. [39, 40, 41].  There are also research efforts in detecting Alzheimer’s Disease e.g. [42, 
43, 44].  

While the studies noted above are based on small samples of subjects, they all suggest the speech signal as diagnostically useful 
in applications of neurological, cardiological, and psychotraumatic conditions. 

C. Auscultaton 
Auscultation classically denotes examination procedures in which physicians listened to sounds produced by patients’ lungs, 

heart, and intestines, or even the heart sounds of unborn infants, using a simple stethoscope.  This venerable instrument is being 
reengineered for sound capture, active noise cancellation, graphical displays, and machine learning diagnostic classifiers [45, 46, 
47].   This opens numerous signal processing research opportunities in the area which could be of lasting benefit to public health 
and cost of healthcare. 

D. Ballistocardiograms 
Ballistocardiograms (BCGs) are a “non-invasive technique used to measure the ejection force of blood into the  aorta  which  

can  be  used  to  estimate  cardiac  output and contractility change” [48].  BCGs may be taken by using sensors in a bathroom scale 
[49], by cameras [50], an accelerometer in an ear-mounted device, conductive fabrics and sensors in beds [51],  and chairs [52].   
The very small movements of the body when the heart contracts are hard to measure and motion artifacts may lead to errors in 
estimating heart rates [53]. In particular, if the J-peaks of the BCG signals are embedded in noise, serious errors in estimation may 
occur [54].  

Ballistocardiograms are very useful diagnostic tools for patients who cannot tolerate contact sensors, such as severely autistic 
children [55].  Because they may be mounted in beds and chairs, they may be useful for continuous unobtrusive monitoring to 
manage chronic disease and diagnose sleep disturbances.  Recent work by Kim, et al, indicates that ballisticardiograms may also be 
used for continuous cuffless estimation of blood pressure [56]. 

 

IV. PRACTICAL ISSUES IN MOBILE ECG PROCESSING 
Clinical ECG’s are often taken from supine patients on examining tables or beds to minimize motion artifacts.  By definition, 

pervasive sensors operate in the users’ environments during their usual activities, possibly including exercise, or other manual 
exertions.  Thus user activities, and pervasive sensors themselves, contribute substantial noise which require robust estimation and 
detection algorithms. 

Majumder [57] indicates that continuous long term health monitoring provides a very important window into various disease 
states.  The available measurements may be combined with predictive algorithms to prevent certain adverse conditions from 
worsening or even occurring in the first place.  Majumder goes on to state that the available sensor products suffer from high signal 
to noise (SNR) ratios that limit their effectiveness and make it necessary to remove motion artifacts for accurate results. 

Majumder, also reports that sensor fusion approaches are being used to assess human emotions, gait and activity, body 
temperature, oxygen levels, pulse rate and more [58].  Kuwabara, et al, report [59] that a blood pressure monitor may be triggered 
by an oxygen saturation (pulse oximetry) measurement device to assess sleep apnea.  When the subject’s oxygen level falls below a 
certain point, an algorithm automatically triggers a HEM-780 blood pressure monitor to measure systolic and diastolic blood 
pressure and the subject’s heart rate.  This allows continuous measurement through the night for better assessment of the risk of 
sleep-onset cardiovascular events. 

As discussed in Chi, et al, motion artifacts are a major problem in using dry electrodes for single lead ECG monitoring. 
“Resolving the difficulties with motion artifacts remains the unsolved challenge in mobile, wearable ECG/EEG sensor systems.” 
[60]. “The ultimate solution will likely be a combination of some circuit design, but even more a matter of innovative mechanical 
construction and signal processing. Efforts in that direction are expected to yield significant returns for this field” [61]. 

Many approaches to health monitoring require sensor fusion, often via smart phone applications. For example, one wearable 
includes an ECG, “a method for measuring respiration rate, body skin temperature, ambient temperature and 3D body acceleration” 
[62].  ARM chips are suitable hardware platforms for such devices and small lithium polymer batteries, rechargeable with a micro-
USB cable, provide sufficient power for these purposes [63].  ECG measurements may be taken using differential amplifiers with 
adjustable gain, converted from analog to digital form. This device allows scaling to 8 measured leads for ECG detection [64]. 

 

V. ROBUST QRS DETECTION IN ECG PROCESSING 
A variety of QRS detection algorithms have been developed over decades that have seen massive increases in computing 

power, and substantial advancements in statistical classification and machine learning techniques. Elgendi et al. reviewed several 



existing algorithms in terms of noise robustness, parametric tuning (e.g. bandpass upper and lower cut frequencies), and numerical 
efficiency [65].  Some of these included: simple amplitude thresholds, first and second derivative thresholds, bandpass filtering 
before first and second derivative thresholding, morphological analysis, Hilbert Transform, and Wavelet methods. The Pan-
Tomkins algorithm has been widely used for QRS detection and uses several of the techniques reviewed by Elgendi et al. [66]. The 
Pan-Tomkins algorithm was designed for use with clinical-quality leads with electrodes in contact with the skin using saline paste. 
This form-factor is not useful for long term monitoring of athletes or outpatient users.  Also, Pan Tompkins has strong regularity 
assumptions, which has limitations in non-contact sensor applications – It is also prone to double triggering with arrhythmic data, 
which increases false detect rates, and may overestimate heart rate variability (See Fig. 2).  Pan-Tompkins marks the greatest slope 
in the R-wave as the fiducial point.  But differences of random variables have higher variance than the variables themselves (In the 
fully independent case, the variance of the difference is the sum of the variances.)  Thus, difference-based features accentuate 
noise, and are less stable in high-noise non-contact sensors (See Fig. 3).  The maximum slope point is consistent in healthy hearts 
observed in low noise, but non-contact sensors are inherently noisy, so detection and alignment based on single point extremes is 
risky.  This can give incorrect heart rate variability readings and degrade any subsequent diagnostic measurements, or biometric 
template matching.   

We discuss here approaches to multi-stage robust processing for QRS detection, and robust average beat estimation, for ECG’s 
in moderate to very high noise levels which degrade the performance of the algorithms listed above. 

We employed a multi-stage noise abatement process starting with clipping, and sudden baseline shift, noise types.  Sudden 
baseline shifts and impact artifacts can cause slippage of the electrodes, and are often clipped. Affected areas are simply excluded 
from further analysis, which allows more accuracy and precision in later, e.g. heart rate variability metrics.  Baseline shifts and 
impact artifacts are detected using an integrator of the low-pass filtered signal with a cut-point of 0.5 Hz.  Data contaminated with 
slow baseline wander, mains power noise, and commodity microcontroller self-noise in the ADCs may be retained after high-pass, 
and notch, filtering, and Least Mean Squares (LMS) adaptive filtering to abate these sources. 

Clipping occurs at, or near, the minimum/maximum values for an Analog-to-Digital-Converter (ADC): e.g. 0 and 65335 for a 
16 bit ADC. There is hard, and soft, clipping. Hard clipped data simply reads at the ADC minimum or maximum when the input 
voltage it has saturated the sensor. Soft clipping is more difficult. Some sensors take on a range of values near the min/max values. 
For soft-clipped data, we employ a constrained maximum likelihood density estimator.  

We next employ a multiphase machine learning process that iteratively builds more sensitive and specific QRS detectors in 
stages. See figure 1.  The general progression is from sensitive but non-specific, to sensitive and specific detectors as the system 
learns. 

We first apply a bandpass filter (4-12Hz) and then apply an energy-based detector that doesn't rely on a particular shape or 
point feature (e.g. slope) over a rolling window 0.15 seconds wide. The detector threshold is learned and then applied. Detected 
QRS regions are normalized, and used as inputs to a machine learning process that constructs the QRS detection filter weights from 
those regions. 

The detection filter is applied and an integrator with a width of 0.15 seconds is used to form a second detector filter from the 
regions flagged by the first detector filter. Those QRS regions are used in a robust estimator to refine the detector filter weights, 
and a third iteration of detection filter coefficients are constructed and applied. The maximal points in the detected QRS regions are 
marked, and then cross-correlated against an averaged QRS from the previous iteration. Finally, a physical plausibility check is 
performed to reject any physically impossible annotation locations based on what we know about heart physiology and electrical 
conductance [67]. 



 
Figure 1. Multiphase Robust QRS detection and estimation processes. 

 
Figure 2 contrasts QRS identifications by the classic Pan-Tomkins versus identifications made by multiphase robust QRS detection.  Pan-

Tomkins shows a systematic over-detection. 

 

 
Figure 2. Moderately noisy exercise ECG with Robust Multiphase QRS detection (top) versus conventional Pan-Tomkins detection (bottom) 

with multiple false detections caused by noise. 

Figure 3 shows ECG data from a capacitive sensor operating through multiple layers of clothing.  This quality of data can only 
be processed if robust estimation and detection techniques are employed.  The true detect rate for the multiphase robust algorithm 
over the data set was 89.3 percent, versus 54 percent for best conventional detection algorithms. 

 



 
Figure 3. Representative ECG reading from capacitive cloth sensor (top) Robust detector output (middle), contemporaneous ECG recording 

using contact electrodes from thumb to thumb for ground truth reference. If the algorithm flags multiple possible locations near each other, as seen 
between seconds 28 to 29 it will pick the location with the best cross correlation against an estimated average beat.  

Finally, depending on conditions, it may be necessary to assess the presence of cardiolocomotor synchronization [68], and to 
classify events as either QRS complexes or footfalls.  Walking and running subjects tend to select cadences that synchronize their 
heart rates and their stride rates.  This can result in synchronized foot fall signals that must be discriminated from actual QRS 
complexes before creating average beat clusters. Pan-Tomkins cannot differentiate footfalls and heart beats and flags both as 
heartbeats.  Figure 4 shows footfall/heart rate data and Figure 5 shows the average beat that the Del Rey algorithm is able to 
generate from that data set, clearly differentiating the heart rate from the footfalls. Additional averaged can reduce the residual 
noise even further, if needed. 

 



 
 

Figure 4. Raw Footfall/Heart Rate Data 
 



 
 
Figure 5. Del Rey Algorithm Extracts Average Beat 
 

VI. CONCLUSIONS 

 
The ready availability of commodity sensors including ECG sensors, microphones, accelerometers, and PPG sensors have 

opened a wide range of research topics in physiological signal processing.  It is also clear that robust signal processing algorithms 
will be needed to process data acquired in actual user environments to fully exploit these rich data sources. 

 

 
 
 



  
REFERENCES 
 

 
1 J. Pan and W. Tompkins, “A real-time QRS detection algorithm,” 
IEEE Trans. on Biomedical Engineering, Vol. BME-32, NO. 3, pp 
230-236. Mar. 1985 
2 Chi, Y. M., Jung, T. P., & Cauwenberghs, G. (2010). Dry-contact 
and noncontact biopotential electrodes: Methodological 
review. IEEE reviews in biomedical engineering, 3, 106-119. 
3 Khairuddin, A. M., Azir, K. F. K., & Kan, P. E. (2017, July). 
Limitations and future of electrocardiography devices: A review 
and the perspective from the Internet of Things. In 2017 
International Conference on Research and Innovation in 
Information Systems (ICRIIS) (pp. 1-7). IEEE 
4 https://www.alivecor.com/kardiamobile/ 
5 A. Lopez and P. Richardson, “Capacitive electrocardiographic 
and bioelectric electrodes ,” IEEE Transactions on Biomedical 
Engineering, Vol. BME-16, Issue 1, 1969, page 99. 
6 A. Aleksandrowicz and S. Leonhardt, “Wireless and non-contact 
ECG measurement system—The Aachen SmartChair,” 
ActaPolytechnica, vol. 2, pp. 68–71, Jun. 2007 
7 Majumder, S., Mondal, T., & Deen, M. (2017). Wearable sensors 
for remote health monitoring. Sensors, 17(1), 130. 
8 Liu, Y., Pharr, M., & Salvatore, G. A. (2017). Lab-on-skin: a 
review of flexible and stretchable electronics for wearable health 
monitoring. ACS nano, 11(10), 9614-9635.. 
9 Khairuddin, A. M., Azir, K. F. K., & Kan, P. E. (2017, July). 
Limitations and future of electrocardiography devices: A review 
and the perspective from the Internet of Things. In 2017 
International Conference on Research and Innovation in 
Information Systems (ICRIIS) (pp. 1-7). IEEE. 
10 Hallfors, N. G., Jaoude, M. A., Liao, K., Ismail, M., & Isakovic, 
A. F. (2017, September). Graphene oxide—Nylon ECG sensors for 
wearable IoT healthcare. In 2017 Sensors Networks Smart and 
Emerging Technologies (SENSET) (pp. 1-4). IEEE. 
11 Chi, Y. M., Jung, T. P., & Cauwenberghs, G. (2010). Dry-
contact and noncontact biopotential electrodes: Methodological 
review. IEEE reviews in biomedical engineering, 3, 106-119. 
12 Hallfors, N. G., Jaoude, M. A., Liao, K., Ismail, M., & Isakovic, 
A. F. (2017, September). Graphene oxide—Nylon ECG sensors for 
wearable IoT healthcare. In 2017 Sensors Networks Smart and 
Emerging Technologies (SENSET) (pp. 1-4). IEEE. 
13 Wang, Y., Qiu, Y., Ameri, S. K., Jang, H., Dai, Z., Huang, Y., & 
Lu, N. (2018). Low-cost, μm-thick, tape-free electronic tattoo 
sensors with minimized motion and sweat artifacts. npj Flexible 
Electronics, 2(1), 6. 
14 Chi, Y. M., Jung, T. P., & Cauwenberghs, G. (2010). Dry-
contact and noncontact biopotential electrodes: Methodological 
review. IEEE reviews in biomedical engineering, 3, 106-119 
15 P. Shyamkumar, Pratyush Rai, Sechang Oh, Mouli Ramasamy, 
Robert E. Harbaugh and Vijay Varadan, Wearable Wireless 
Cardiovascular Monitoring Using Textile-Based Nanosensor and 
Nanomaterial Systems, Electronics 2014, 3, 504-520 
16 Caldara, M., Comotti, D., Gaioni, L., Pedrana, A., Pezzoli, M., 
Re, V., & Traversi, G. (2017, June). Development of a multi-lead 
ECG wearable sensor system for biomedical applications. In 2017 
7th IEEE International Workshop on Advances in Sensors and 
Interfaces (IWASI) (pp. 207-212). IEEE. 
17 Khairuddin, A. M., Azir, K. F. K., & Kan, P. E. (2017, July). 
Limitations and future of electrocardiography devices: A review 
and the perspective from the Internet of Things. In 2017 

 
International Conference on Research and Innovation in 
Information Systems (ICRIIS) (pp. 1-7). IEEE. 
18 McCann, J. A. S., & Holmes, H. N. (2006). Interpreting Difficult 
ECGs: A Rapid Reference, p 39 
19 T. Edison, "Speaking-Telegraph," United States Patent 
US474230A, 3 May 1892 
20 G. Sessler and J. West, “Electroacoustic Transducer,” United 
States Patent US3118022, 14 Jan. 1964 
21 K. Culhane, M. O’Connor, D. Lyons and G. Lyons 
“Accelerometers in rehabilitation medicine for older adults.” Age 
and Ageing 2005; 34: 556–560  
22 S. Del Din, A. Hickey, N. Hurwitz, J. Mathers, L. Rochester and 
A. Godfrey, “Measuring gait with an accelerometer-based 
wearable: influence of device location, testing protocol and age,” 
Physiol. Meas. 37 1785 
23 R. Li, S. Kling, M. Salata, S. Cupp, J. Sheehan and J. Voos, 
“Wearable Performance Devices in Sports Medicine,” Sports 
Health, 2016 Jan; 8(1): 74–78 
24 A. Sucerquia, J. López and J. Vargas-Bonilla “Real-Life/Real-
Time Elderly Fall Detection with a Triaxial Accelerometer,” 
Sensors 2018, 18, 1101 
25 G. Shafiq, S. Tatinati, W. Ang and K. Veluvol, “Automatic 
Identification of Systolic Time Intervals in Seismocardiogram,” 
Nature Scientific Reports 6:37524, 
www.nature.com/scientificreports/  
26 Moraes, J., Rocha, M., Vasconcelos, G., Vasconcelos Filho, J., 
de Albuquerque, V., & Alexandria, A. (2018). Advances in 
photopletysmography signal analysis for biomedical 
applications. Sensors, 18(6), 1894. 
27 Moraes, J., Rocha, M., Vasconcelos, G., Vasconcelos Filho, J., 
de Albuquerque, V., & Alexandria, A. (2018). Advances in 
photopletysmography signal analysis for biomedical 
applications. Sensors, 18(6), 1894. 
28 Schäfer, A., & Vagedes, J. (2013). How accurate is pulse rate 
variability as an estimate of heart rate variability?: A review on 
studies comparing photoplethysmographic technology with an 
electrocardiogram. International journal of cardiology, 166(1), 15-
29. 
29 Schäfer, A., & Vagedes, J. (2013). How accurate is pulse rate 
variability as an estimate of heart rate variability?: A review on 
studies comparing photoplethysmographic technology with an 
electrocardiogram. International journal of cardiology, 166(1), 15-
29. 
30 Tsuji, H., Larson, M. G., Venditti, F. J., Manders, E. S., Evans, 
J. C., Feldman, C. L., & Levy, D. (1996). Impact of reduced heart 
rate variability on risk for cardiac events: the Framingham Heart 
Study. Circulation, 94(11), 2850-2855. 
31 Bassett, D. (2016). A literature review of heart rate variability in 
depressive and bipolar disorders. Australian & New Zealand 
Journal of Psychiatry, 50(6), 511-519. 
32 Marrone, O., & Bonsignore, M. R. (2018). Blood-pressure 
variability in patients with obstructive sleep apnea: current 
perspectives. Nature and science of sleep, 10, 229 
33 Prashanth Shyamkumar, Pratyush Rai, Sechang Oh, Mouli 
Ramasamy, Robert E. Harbaugh and Vijay Varadan, Wearable 
Wireless Cardiovascular Monitoring Using Textile-Based 
Nanosensor and Nanomaterial Systems, Electronics 2014, 3, 504-
520. 
34 Richard V. Milani, MD, Carl J. Lavie, MD, Robert M. Bober, 
MD, Alexander R. Milani, Hector O. Ventura, MD, Improving 
Hypertension Control and Patient Engagement Using Digital 
Tools, The American Journal of Medicine, Vol 130, No 1, January 
2017 



 
35 Sarah Buhr, AliveCor gets a green light from FDA to screen for 
dangerously high potassium levels in the blood, TechCrunch, Sept. 
11, 2018 
36 Mayampurath, A., Volchenboum, S. L., & Sanchez-Pinto, L. N. 
(2018). Using photoplethysmography data to estimate heart rate 
variability and its association with organ dysfunction in pediatric 
oncology patients. npj Digital Medicine, 1(1), 29. 
37 Maor, "Voice signal characteristics are independently associated 
with coronary artery disease," Mayo Clinic Proceedings, vol. 93, 
no. 7, pp. 840-847, 2018. 
38 C. Marmar, "Speech-based markers for posttraumatic stress 
disorder in US veterans.," Depress Anxiety, no. 
https://doi.org/10.1002/da.22890, pp. 1-10, 2019. 
39 N. Dehak, “Evaluation of neurological diseases by means of 
speech processing and multimodal analysis,” IEEE Signal 
Processing in Medicine and Biology Symposium, 2018. 
Philadelphia, PA, USA 
40 J. Hlavnička, R. Čmejla, T. Tykalová, K. Šonka, E. Růžička and 
J. Rusz, “Automated analysis of connected speech reveals early 
biomarkers of Parkinson’s disease in patients with rapid eye 
movement sleep behaviour disorder,” Scientific Reports volume 7, 
Article number: 12 (2017) 
41 P.Vizza, D Mirarchi, G. Tradigo, M. Redavide, R. B. Bossio, 
and P. Veltri “Vocal signal analysis in patients affected by 
Multiple Sclerosis.” Procedia Computer Science 108C (2017), 
1205-1214 
42 K. Frasera, J. Meltzerb and F. Rudzicz, “Linguistic features 
identify Alzheimer’s Disease in narrative speech,” Journal of 
Alzheimer’s Disease 49 (2016) 407–422 DOI 10.3233/JAD-
150520 
43 K. López-de-Ipiña et al. “On the selection of non-invasive 
methods based on speech analysis oriented to automatic Alzheimer 
Disease diagnosis,” Sensors 2013, 13, 6730-6745; 
doi:10.3390/s130506730 
44 S. Ahmed, A. Haigh, C. de Jager and P. Garrard “Connected 
speech as a marker of disease progression in autopsy-proven 
Alzheimer’s disease,” Brain 2013: 136; 3727–3737 
45 M. Elhilali and J. West, “The stethoscope gets smart: Engineers 
from Johns Hopkins are giving the humble stethoscope an AI 
upgrade,” IEEE Spectrum, Vol. 56, pp 36-41, Issue 2, Feb 2019. 
46 R. Palaniappan1, K. Sundaraj and Sebastian Sundaraj, “A 
comparative study of the svm and k-nn machine learning 
algorithms for the diagnosis of respiratory pathologies using 
pulmonary acoustic signals,” BMC Bioinformatics 2014, 15:223 
47 J. Rubin, R. Abreu, A. Ganguli, S. Nelaturi, I. Matei, K. 
Sricharan, “Recognizing abnormal heart sounds using deep 
learning.” arXiv:1707.04642v2 
48 Wiard, R. M., Inan, O. T., Argyres, B., Etemadi, M., Kovacs, G. 
T., & Giovangrandi, L. (2011). Automatic detection of motion 
artifacts in the ballistocardiogram measured on a modified 
bathroom scale. Medical and Biological Engineering and 
Computing, 49(2), 213-220. 
49 Wiard, R. M., Inan, O. T., Argyres, B., Etemadi, M., Kovacs, G. 
T., & Giovangrandi, L. (2011). Automatic detection of motion 
artifacts in the ballistocardiogram measured on a modified 
bathroom scale. Medical and Biological Engineering and 
Computing, 49(2), 213-220. 
50 Shao, D., Tsow, F., Liu, C., Yang, Y., & Tao, N. (2016). 
Simultaneous monitoring of ballistocardiogram and 
photoplethysmogram using a camera. IEEE Transactions on 
Biomedical Engineering, 64(5), 1003-1010. 
51 Alivar, A., Carlson, C., Suliman, A., Warren, S., Prakash, P., 
Thompson, D. E., & Natarajan, B. (2019). Motion artifact 

 
detection and reduction in bed-based ballistocardiogram. IEEE 
Access, 7, 13693-13703. 
52 Xie, Q., Li, Y., Wang, G., & Lian, Y. (2019, March). Heart Rate 
Estimation from Ballistocardiogram Using Hilbert Transform and 
Viterbi Decoding. In 2019 IEEE International Conference on 
Artificial Intelligence Circuits and Systems (AICAS) (pp. 189-193). 
IEEE 
53 Alivar, A., Carlson, C., Suliman, A., Warren, S., Prakash, P., 
Thompson, D. E., & Natarajan, B. (2019). Motion artifact 
detection and reduction in bed-based ballistocardiogram. IEEE 
Access, 7, 13693-13703. 
54 Xie, Q., Li, Y., Wang, G., & Lian, Y. (2019, March). Heart Rate 
Estimation from Ballistocardiogram Using Hilbert Transform and 
Viterbi Decoding. In 2019 IEEE International Conference on 
Artificial Intelligence Circuits and Systems (AICAS) (pp. 189-193). 
IEEE 
55 Alivar, A., Carlson, C., Suliman, A., Warren, S., Prakash, P., 
Thompson, D. E., & Natarajan, B. (2019). Motion artifact 
detection and reduction in bed-based ballistocardiogram. IEEE 
Access, 7, 13693-13703. 
56 Kim, C. S., Carek, A. M., Mukkamala, R., Inan, O. T., & Hahn, 
J. O. (2015). Ballistocardiogram as proximal timing reference for 
pulse transit time measurement: Potential for cuffless blood 
pressure monitoring. IEEE Transactions on Biomedical 
Engineering, 62(11), 2657-2664 
57 Majumder, S., Mondal, T., & Deen, M. (2017). Wearable 
sensors for remote health monitoring. Sensors, 17(1), 130. 
58 Majumder, S., Mondal, T., & Deen, M. (2017). Wearable 
sensors for remote health monitoring. Sensors, 17(1), 130. 
59 Kuwabara, M., Hamasaki, H., Tomitani, N., Shiga, T., & Kario, 
K. (2017). Novel triggered nocturnal blood pressure monitoring for 
sleep apnea syndrome: distribution and reproducibility of 
hypoxia‐triggered nocturnal blood pressure measurements. The 
Journal of Clinical Hypertension, 19(1), 30-37. 
60 Chi, Y. M., Jung, T. P., & Cauwenberghs, G. (2010). Dry-
contact and noncontact biopotential electrodes: Methodological 
review. IEEE reviews in biomedical engineering, 3, 106-119. 
61 Chi, Y. M., Jung, T. P., & Cauwenberghs, G. (2010). Dry-
contact and noncontact biopotential electrodes: Methodological 
review. IEEE reviews in biomedical engineering, 3, 106-119. 
62 Caldara, M., Comotti, D., Gaioni, L., Pedrana, A., Pezzoli, M., 
Re, V., & Traversi, G. (2017, June). Development of a multi-lead 
ECG wearable sensor system for biomedical applications. In 2017 
7th IEEE International Workshop on Advances in Sensors and 
Interfaces (IWASI) (pp. 207-212). IEEE. 
63 Caldara, M., Comotti, D., Gaioni, L., Pedrana, A., Pezzoli, M., 
Re, V., & Traversi, G. (2017, June). Development of a multi-lead 
ECG wearable sensor system for biomedical applications. In 2017 
7th IEEE International Workshop on Advances in Sensors and 
Interfaces (IWASI) (pp. 207-212). IEEE. 
64 Caldara, M., Comotti, D., Gaioni, L., Pedrana, A., Pezzoli, M., 
Re, V., & Traversi, G. (2017, June). Development of a multi-lead 
ECG wearable sensor system for biomedical applications. In 2017 
7th IEEE International Workshop on Advances in Sensors and 
Interfaces (IWASI) (pp. 207-212). IEEE. 
65 M. Elgendi, B. Eskofier, S. Dokos and D. Abbot, “Revisiting 
QRS Detection Methodologies for Portable, Wearable, Battery-
Operated, and Wireless ECG Systems.” PLoS ONE 9(1): e84018. 
doi:10.1371/journal.pone.0084018 
66 J. Pan and W. Tompkins, “A real-time QRS detection 
algorithm,” IEEE Trans. on Biomedical Engineering, Vol. BME-
32, NO. 3, pp 230-236. Mar. 1985 



 
67 C. Ramanathan*, P. Jia, R. Ghanem, K. Ryu, and Y. Rudy, 
“Activation and repolarization of the normal human heart under 
complete physiological conditions,” PNAS April 18, 2006, Vol. 
103, no. 16, 6309–6314  
68 V. Novak, V., K. Hu, M. Vyas, L. A. Lipsitz (2007). 
Cardiolocomotor coupling in young and elderly people. The 
Journals of Gerontology Series A: Biological Sciences and 
Medical Sciences, 62(1), 86-92. 
 
 


